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Abstract—Room impulse responses (RIRs) are a key tool in
architectural acoustics and spatial sound for virtual reality. They
characterize the room response between a sound source and a re-
ceiver. Directional RIRs at the receiver position can be measured
with spherical microphone arrays or calculated with 3D models
and numerical methods. Either because of a low number of
microphones or limited computational capacity, there is a need to
interpolate the RIRs to obtain higher directional resolutions. The
spherical Fourier transform (SFT) enables a promising physics-
based interpolation approach. However, existing SFT algorithms
for acoustic purposes highly depend on the spherical distribution
of microphones. This paper presents a SFT algorithm based on
Tikhonov regularization that is suitable for random spherical
distributions. Results show that the regularized SFT maintains
the interpolation error bounded at high-energy values in time
and up to a maximum frequency determined by the number of
microphones. An open-source implementation is made publicly
available to foster the reproducibility of this research.

Index Terms—Architectural acoustics, spatial sound tech-
nology, room impulse response, spherical Fourier transform,
Tikhonov regularization.

I. INTRODUCTION

Room impulse responses (RIRs) are a key tool in archi-
tectural acoustics [1] and spatial sound for virtual reality [2].
Traditionally, RIRs characterize the room response to sound
transmission from an omnidirectional sound source to an
omnidirectional receiver. Nowadays, there is a growing interest
in directional receivers to discriminate among the different
directions in which sounds may reach a listener. In this regard,
directional RIRs can be measured with spherical microphone
arrays [3] or calculated with 3D models and numerical meth-
ods [4], [5]. Either because of the low number of microphones
or limited computational capacity, there is a need to interpolate
the RIRs to obtain higher directional resolutions.

Geometric approaches such as baricentric interpolation have
been used for acoustic data [6], [7]. Physics-based approaches
are a more convenient choice because they consider the spatial
nature of sound propagation. Physics-based interpolation has
been used for RIRs captured with microphones distributed in
rectangular arrays [8] and microphones uniformly distributed
on rigid spherical baffles [9], [10]. Rigid spherical arrays, in
particular, can leverage the angular solutions to the acoustic
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Fig. 1. Interpolation of room impulse responses.

wave equation, in the form of the spherical Fourier transform
(SFT) and the inverse spherical Fourier transform (ISFT),
for interpolation purposes [11], [12]. However, existing SFT
algorithms highly depend on the spherical distribution of
microphones [13], [14].

This paper presents an open-source SFT algorithm that is
suitable for interpolating RIRs captured with microphones
randomly distributed on a spherical baffle. The SFT algorithm
is implemented with the classic regularization method of
Tikhonov that minimizes errors in the `2-norm [15], [16]. Fig-
ure 1 shows an overview of RIR interpolation. First, the SFT
analyses initial RIRs captured with a spherical array that has
a sparse number of microphones. Then, the ISFT synthesizes
the RIRs for a dense number of directions. An open-source
implementation1 of this algorithm is made publicly available
to foster the reproducibility of this research.

The reminder of this paper is organized as follows: Sec. II

1https://github.com/AlarconGanoza/sphericalAcoustic

https://github.com/AlarconGanoza/sphericalAcoustic


Fig. 2. Spherical coordinates. A point ~r = (r, θ, φ) is specified by its radial
distance r, azimuth angle θ ∈ [−π, π], and elevation angle φ ∈
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formulates the regularized SFT, Sec. III discusses interpolation
errors, and Sec. IV states the conclusions.

II. FORMULATION OF THE REGULARIZED SFT

Spherical RIRs can be represented by a linear combina-
tion of spherical harmonic functions [11]. This representation
defines the SFT and the ISFT [12], [14]. Figure 2 shows
the spherical coordinate system used throughout this paper to
describe these spherical transforms.

A. Continuous SFT

Let ψ(~r, t) denote a finite-energy RIR describing the trans-
mission of sound from a sound source position to a point
~r = (r, θ, φ) on the surface of a continuous recording sphere
of radius r. The time domain is denoted by t.

The SFT of the spherical distribution ψ is defined by

ψnm(r, t) =

∫ π

−π

∫ π/2

−π/2
ψ(r, θ, φ, t)Ynm(θ, φ) cosφdφdθ. (1)

Here, ψnm are SFT coefficients whereas Ynm are real-valued
spherical harmonic functions of order n and degree m:

Ynm(θ, φ) = NnmP
|m|
n (sinφ)×


1, m = 0,√
2 cos(mθ), m > 0,√
2 sin(|m|θ), m < 0,

(2)

where Pmn is the non-normalized associated Legendre function
and the normalization factor is defined as

Nnm = (−1)|m|
√

2n+ 1

4π

(n− |m|)!
(n+ |m|)!

. (3)

The ISFT recovers ψ from ψnm in (1) as follows:

ψ(r, θ, φ, t) =

∞∑
n=0

n∑
m=−n

ψnm(r, t)Ynm(θ, φ). (4)

B. Spherical discretization

In practice, (1) is approximated for a discrete distribution of
L points on the recording sphere, denoted by ~r` = (r, θ`, φ`),
where ` = 1, ..., L. These points are the positions of the L
microphones on the spherical array. Let ψ(~r`, t) denote the
RIR from the source in the room to the `-th microphone. Since

the number of microphones is finite, the sum in (4) can only
be computed up to a maximum number of terms N determined
by the following sampling theorem on the sphere:

(N + 1)2 ≤ L. (5)

Hence, the sum in (4) remains truncated as

ψ(~r`, t) =

N∑
n=0

n∑
m=−n

ψnm(r, t)Ynm(θ`, φ`) + εN (~r`, t), (6)

where ψnm are the SFT coefficients to be calculated and εN
contains all residual terms for n > N .

In matrix notation, and for each instant of time, (6) becomes

Ψ = YΨnm + ε, (7)

where
Ψ = [ψ(~r1, t), . . . , ψ(~rL, t)]

T , (8)

Ψnm = [ψ00, ψ1−1, . . . , ψNN ]T , (9)

ε = [εN (~r1, t), . . . , εN (~rL, t)]
T , (10)

and

Y =

Y00(θ1, φ1) . . . YNN (θ1, φ1)
...

...
...

Y00(θL, φL) . . . YNN (θL, φL)

 . (11)

The matrix Y of size L× (N+1)2 contains the spherical har-
monic functions and the T symbol denotes matrix transpose.
The approximate solution to (7) defines the discrete SFT

Ψ̂nm = Y+Ψ, (12)

where the + symbol denotes pseudo-inverse.

C. Regularized SFT

Tikhonov regularization [15], [16] defines Y+ in (12) as

Y+ = (YTY + λ2I)−1Y, (13)

where λ is known as the regularization parameter. An equiv-
alent expression is obtained by means of the singular value
decomposition (SVD),

Y = UΣVT , (14)

its inversion, and the smoothing of Σ as follows:

Y+ = VΣ−1reg U
T
. (15)

The matrices U and V are unitary and Σ is a rectangular,
diagonal matrix containing the singular values σ`, where ` =
1, ..., L. The regularized inverse of Σ is defined as

Σ−1reg = diag
(
|σ`|2

|σ`|2 + λ2
× 1

σ`

)
. (16)

In summary, the regularized discrete SFT is defined by (12),
(15), and (16), whereas the discrete ISFT is defined by

Ψ̂ = YΨ̂nm. (17)



III. EVALUATION OF RIR INTERPOLATION

Sparse and dense RIR datasets were calculated using the
algorithm in [17] to evaluate the proposed interpolation ap-
proach described in Fig 1. This algorithm calculates the sound
pressure on a rigid spherical baffle placed inside a rect-
angular parallelepiped room. The calculated sound pressure
corresponds to the total reverberant field, which includes the
scattering from the rigid sphere and the high-order reflections
from the walls. The origin of the room coordinate system was
a bottom corner of the room. The dimensions of the room were
4.62 m wide (along x), 3.84 m long (along y), and 3 m high
(along z). In room coordinates, the omnidirectional source
position was (1.5, 2, 1) m, whereas the center of the spherical
microphone array, that is, the center of the spherical coordinate
system shown in Fig. 2, was (2.5, 2, 1.5) m. The reverberation
time of the room was 0.2 s and the reflection order, 36. A
sampling frequency of 16 kHz was used to calculate 3200
samples in time, corresponding to a duration of 200 ms.

The sparse grids were random distributions on a rigid sphere
of radius r; each microphone position is denoted by ~r` =
(r, θ`, φ`), where ` = 1, 2, ..., L. The sparse RIRs are denoted
by ψsparse(~r`, t). A low-pass filter was applied to ψsparse to
account for spatial aliasing, setting the maximum frequency
of reliable interpolation to

fmax =
cNmax

2πr
, (18)

where the speed of sound in air was set to c = 343 m/s. The
maximum order used to compute the SFT was determined by
the limiting case of (5); in effect,

Nmax = b
√
L− 1c. (19)

The dense grid was a spherical grid based on subdivisions
of the icosahedron, denoted by ~pi = (r, θi, φi), where i =
1, 2, ..., I . The dense RIRs used as target data are denoted
by ψdense(~pi, t). This target data was also low-pass filtered
according to (18). The dense RIRs, interpolated from ψsparse

with the proposal, are denoted by ψ̂dense(~pi, t). The interpo-
lation error is defined as follows:

E(t) =

RMS
~pi

(
ψdense(~pi, t)− ψ̂dense(~pi, t)

)
RMS
~pi

(ψdense(~pi, t))
, (20)

where RMS stands for root mean square along ~pi.
Considering a rigid spherical baffle of radius r = 8 cm,

four sparse grids were evaluated: L = 49, 36, 25, 16; corre-
spondingly, Nmax = 6, 5, 3, 2. In all cases, the dense grid
was I = 162. Fig. 3 shows the energy of the RIRs in
all microphones for target data ψdense(~pi, t) and interpolated
data ψ̂dense(~pi, t). It is observed that, in both cases, the
energy remains concentrated within the first 100 ms; after this
time, the background noise is only observed below −36 dB.
Therefore, the region of interest comprises the first 100 ms.
A comparison between Fig. 3(a) and Fig. 3(b) shows that the
envelopes are very similar in the region of interest.

(a)

(b)

Fig. 3. Energy of RIRs. a) Target. b) Interpolated.

The four panels in Fig. 4 show the interpolation errors cal-
culated with (20) for different values of L and Nmax. Results
are displayed in logarithmic scale. Blue lines correspond to
interpolation with the non-regularized SFT (λ = 0), whereas
red lines, to interpolation with the proposed regularized SFT
(λ > 0). Within the high-energy region comprising the first
100 ms, all panels show that the proposal yielded the lower
error bounds around−6 dB; these results did not depend on the
sparse resolutions. Contrasting all panels, it can be observed
that improvements in accuracy were more noticeable at higher
sparse resolutions (e.g., L = 49). However, the benefits of
regularization were also observed at lower sparse resolutions
(e.g., L = 16). This was of particular interest because it
indicates that the proposal can be used with available spherical
arrays that have fewer microphones.

IV. CONCLUSION

This paper has presented an open-source SFT algorithm
based on Tikhonov regularization that is suitable for inter-
polating RIRs captured with microphones that are randomly
distributed on a rigid spherical baffle. As a result, the SFT-
based interpolation maintained the errors bounded at high-
energy values in time and up to a maximum frequency
determined by the number of microphones.

Extensions to this work might include physics-based frame-
works for the reconstruction of sound pressure fields [14]. This
would enable the removal of acoustic scattering from the rigid
spherical baffle during interpolation to yield free-field RIRs.
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Fig. 4. Interpolation errors. a) L = 49, Nmax = 6. b) L = 36, Nmax = 5. c) L = 25, Nmax = 4. d) L = 16, Nmax = 3.

Alternative regularization techniques that minimizes errors in
the `1-norm instead of the `2-norm, such as compressive sens-
ing [18], might also be considered when implementing SFT
algorithms. Finally, a perceptual evaluation of the interpolated
RIRs by means of detectability of differences, and localization
tests along angles, could provide more insight into the validity
of the suggested approach.
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