Regularized Spherical Fourier Transform for Room Impulse Response Interpolation

Authors: Julio Alarcón Ganoza1, Javier Solís Lastra1 and César D. Salvador2

1Facultad de Ingeniería Electrónica y Eléctrica, Universidad Nacional Mayor de San Marcos, Lima, Perú
2Perception Research, Lima, Perú
I. Introduction

Room impulse response (RIR)

- Room response to sound propagation between a source and a receiver
- Key tool in architectural acoustics and spatial sound for virtual reality
I. Introduction

Room impulse response (RIR)

- RIR is sound pressure measured in a reverberant room with an impulse
- Directional RIR can be measured with a spherical microphone array
I. Introduction

RIR interpolation

- Either because of the low number of microphones or limited computational capacity, there is a need to interpolate RIRs.
I. Introduction

Proposal for RIR interpolation
II. Formulation of the regularized SFT

Continuous spherical Fourier transform (SFT) and inverse spherical Fourier transform (ISFT)

- The SFT and ISFT allows to express the RIRs as a linear combination of orthonormal basis functions on the sphere (e.g., spherical harmonics)

Continuous sound pressure: ψ

Infinite spherical harmonics

Infinite SFT coefficients

Presenter: Julio Alarcón Ganoza

https://www.intercon.org.pe/2021/
II. Formulation of the regularized SFT

Spherical discretization

- Sample of sparse RIR
- Sample of dense RIR

Discrete SFT

- Frequency limit
- Uniform distribution: Interpolation error ✓
- No-uniform distribution: Interpolation error ✗❗

ISFT

RIR interpolation

L microphones

Presenter: Julio Alarcón Ganoza

https://www.intercon.org.pe/2021/
II. Formulation of the regularized SFT

Regularized SFT

- Frequency limit.
- Uniform distribution: Interpolation error ✓
- No-uniform distribution: Interpolation error ✓
- **Random distribution**: Interpolation error ✓
III. Evaluation of RIR interpolation

Initial Conditions

Room dimensions
4.62m wide, 3.84m long, 3m high.
Reverberation time: 0.2 s.
Sampling frequency: 16 kHz.
Number of samples in time: 3200.

Sparse grid
Radius: $r = 8$ cm
Random distribution, $L = 49, 16$.

Dense grid
Icosphere distribution, 162 microphones
III. Evaluation of RIR interpolation

RIR energy comparison

- In both cases, the energy remains concentrated within the first 100 ms
- Envelopes are very similar in the region of interest

Energy of the target RIRs

Energy of the interpolated RIRs
III. Evaluation of RIR

Interpolation error

\[\lambda = 0 : \text{non-regularized} \]

\[\lambda > 0 : \text{regularized} \]

Simulated RIRs

- Sparse RIR (initial data)
- Dense RIR (target data)

\[\psi_{\text{sparse}} \]
\[\psi_{\text{dense}} \]

Low-pass filter

SFT

ISFT

Interpolated RIR

\[\hat{\psi}_{\text{dense}} \]

Calculation of the interpolation error

E

Presenter: Julio Alarcón Ganoza

https://www.intercon.org.pe/2021/
III. Evaluation of RIR interpolation

Interpolation error

Number of microphones: $L = 49$
Max order: $N_{\text{max}} = 6$

Number of microphones: $L = 16$
Max order: $N_{\text{max}} = 3$
IV. Conclusions

- Regularized SFT based interpolation maintained the errors bounded at high-energy values in time.

- Extensions to this work might include physics-based frameworks for the reconstruction of sound pressure fields.

- Open-source library available at: https://github.com/AlarconGanoza/sphericalAcoustic

Presenter: Julio Alarcón Ganoza

https://www.intercon.org.pe/2021/
We invite you to use our library