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Abstract Spatial sound information can be recorded using spherical microphone arrays. Realistic binaural renderings of

such recordings require the head-related transfer functions (HRTFs), characterized from thousands of surrounding positions

to both ears. We propose a 3D audio processing method to make sounds appear closer or farther than their original distance.

HRTFs for only some surrounding positions at a fixed distance are required. Binaural signals are synthesized from samplings

of the sound pressure field on a rigid spherical surface. The directional structure of both the sound pressure field and the

HRTFs are encoded using spherical harmonics. Distance manipulations rely on the use of the spherical Hankel functions.

Key words Sound source distance, sound field recording, binaural reproduction.

1. Introduction

Spherical microphone arrays provide a suitable framework for

analyzing the directional structure of sound fields in terms of

spherical harmonics functions [1,2]. The microphones are typically

mounted on the surface of a rigid spherical baffle. The use of such

baffle avoids the dramatic decay of energy for specific harmonic

modes at certain frequencies dictated by the array’s radius. Compact

spherical microphone arrays are therefore useful to obtain stable

encodings of sound fields in terms of spherical harmonics.

The distance information of a sound source can also be included

in spherical harmonic encodings [3, 4]. It requires the use of

spherical Hankel functions, which model the free-field decay of

sound intensity along increasing distance. The sound pressure

distributions at different distances from an observation point are

related by a ratio of spherical Hankel functions [3], which are

referred to as acoustic propagators. Spherical harmonic encodings

can therefore be enhanced using acoustic propagators so as to make

sounds appear closer or farther than their original distance.

On the other hand, the binaural rendering of a sound source

aims to re-create the natural listening experience by synthesizing

the sound pressure at the listener’s ears [5]. These binaural signals

contain auditory localization cues to perceive directions and also

distances within 1 m [6–10]. They arise from the scattering of sound

by the listeners pinna, head and torso. The scattering phenomena

are characterized by the so-called Head-Related Transfer Functions

(HRTFs). They are typically measured with two microphones

placed in the ear canal the listener’s ears, and using a surrounding

array of loudspeakers to emit sounds in the audible frequency range

from 20 Hz to 20 kHz. In conventional binaural systems, an audio

signal is filtered with the HRTFs for both ears, and the resulting

binaural signals are reproduced over headphones.

Binaural cues can be used to determine directions and distances

of nearby lateral sound sources. However, available sets of HRTFs

are typically characterized for surrounding sound sources at a fixed

distance beyond 1 m [11, 12]. The simplest approximation to

synthesize HRTFs for sound sources near the listener’s head from

available sets of HRTFs uses a head-sized sphere to model distance

variations [13]. Better approximations rely on the application of

acoustic propagators to the spherical harmonics representation of

available HRTFs [14–16].

We introduce in this paper a 3D audio processing method to make

sounds appear closer or farther than their original distance during its

binaural rendering. Our proposal combines the synthesis of sound

fields and HRTFs based on the spherical harmonics decomposition.

Section 2 overviews our proposal. Section 3 briefly introduces

the propagation of sound. Section 4 describes the edition of

distance information on microphone array recordings. Section 5

describes the synthesis of HRTFs at arbitrary positions. Section 6

evaluates our proposal in a practical scenario, where microphones

and HRTF’s sound sources are placed on spherical samplings.

Concluding remarks are finally presented in Section 7.

2. Overview

We propose a 3D audio processing method to edit the distance

information of an encoded sound source for its binaural rendering.

Our proposal combines the synthesis of sound fields and HRTFs

based on the spherical harmonics decomposition, for nearby sound

— 1 —



Fig. 1 Overview of the binaural synthesis method.

sources at arbitrary positions (see Fig. 1). Our method requires

sampling the sound pressure field on a rigid spherical surface,

and the HRTFs for only some surrounding positions at a fixed

distance. To synthesize the binaural signals at the directions that

have not been measured, we rely on the use of spherical harmonic

encodings of recorded signals and HRTFs. To edit the distance

information on the spherical harmonics representations, we apply

acoustic propagators based on spherical Hankel functions.

The spherical coordinate system used in this document to

describe our proposal is shown in Fig. 2. A point in space (θ, φ, r)

is specified by its azimuth θ ∈ [−180◦, 180◦], its elevation φ ∈
[−90◦, 90◦], and its distance r. The listener’s ears lie on the

horizontal plane at an elevation φ = 0◦. The front direction

corresponds to azimuth θ = 0◦ and elevation φ = 0◦. The array

of microphones and the surrounding array of sound sources used to

characterize the HRTFs are centered at the origin (0, 0, 0).

Fig. 2 Spherical coordinate system used in the formulation of our proposal.

3. Propagation of sound

The solutions of the acoustic wave equation for sound pressure

in spherical coordinates can be expressed as an expansion of the

acoustic pressure [3]

ψ(θ, φ, r, k) =

∞∑

n=0

n∑

m=−n

Ynm(θ, φ)ψnm(r, k), (1)

at position (θ, φ, r) and wave number k. Here,

Ynm(θ, φ) =

√
2n + 1

4π

(n − m)!

(n + m)!
Pnm(sin φ)eimθ (2)

denotes the complex spherical harmonic function of order n and

degree m, where Pnm are the associated Legendre functions. The

coefficients

ψnm(r, k) = cnm(k)hn(kr), (3)

are referred to as the spherical wave spectrum, where hn is the

spherical Hankel function of order n, and cnm denotes the spherical

expansion coefficients.

For small kr, that is, for low frequencies or small distances from

the origin, the solutions in Eq. (1) can be approximated with small

errors by truncating the sum along n to a finite value N . By using

the asymptotic expansion of spherical Hankel functions for large

orders, it has been shown in [17] that small and bounded truncation

errors are obtained when maximum orders are limited according to

N = dekr

2
e, (4)

where e is the base of the natural logarithm. Conversely, given a

maximum order N , acoustic pressures can be represented up to a

maximum frequency fmax given by

fmax =
Nν

eπr
, (5)

where ν is the velocity of sound in air.

For a given wave number k, the acoustic pressure on a

spherical surface is entirely determined by its spherical expansion

coefficients, as can be noted from Eqs. (1) and (3). Such continuous

set of pressures form an acoustic field. The spherical wave spectra

of the acoustic field measured on two concentric spherical surfaces

of different radii r1 and r2 are therefore related by [3]
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ψnm(r2, k) =
hn(kr2)

hn(kr1)
ψnm(r1, k). (6)

The ratio of spherical Hankel functions are the acoustic propagators

from radius r1 to radius r2. The synthesis of the acoustic field at an

arbitrary distance is thus performed in two processing steps: (a) the

spherical wave spectrum is determined by expanding the acoustic

field on a sphere of radius r1, and (b) the acoustic pressure field at a

desired radius r2 is calculated by acoustic propagation from radius

r1 applying the corresponding acoustic propagators.

We describe the application of this approach to the edition of

distance information in compact microphone array recordings in

Section 4, and to the edition of distance information in available

HRTFs in Section 5. Available sets of HRTFs are typically

measured at far distances. Binaural cues are used by listeners to

determine the range of sound sources nearby the listener’s head.

We therefore limit our description in this document to the acoustic

propagation from far distances r1 = rfar to nearby distances

r2 = rnear .

4. Editing distance in sound field recordings

Using a system of equations like Eq. (1), the vector of pressures

pfar at positions (θmic, φmic, rmic) of M microphones, due to

a sound source at a position (θfar, φfar, rfar) faraway from the

microphones, can be written

pfar = Amiccmic. (7)

The column vector cmic contains the (Nmic + 1)2 spherical

expansion coefficients to be determined. The M × (Nmic +

1)2 matrix Amic contains the spherical harmonics evaluated on

(θmic, φmic) multiplied by the corresponding spherical Hankel

functions evaluated at rmic, both limited to a maximum order

Nmic = min(dekrmic

2
e, b

√
M − 1c). (8)

The vector of coefficients cmic in Eq. (7) can be obtained by

applying a least-squares method with Tikhonov regularization to

compute the pseudo-inverse matrix of Amic. Regularization yields

approximated solutions that are less sensitive to data perturbations

than the ones obtained with the least-squares method. A particular

solution is emphasized by choosing properly the regularization

matrix R that minimizes the residual ‖Amiccmic − pfar‖2 +

‖Rcmic‖2. The pseudo-inverse matrix of Amic reads [18]

A+
mic =

(
AH

micWmicAmic + εmicRmic

)−1

AH
micWmic,

(9)

where Wmic is the M × M diagonal matrix of weighting

coefficients, Rmic is the (Nmic +1)2×(Nmic +1)2 regularization

matrix, and εmic is the regularization parameter.

Weighting coefficients are applied to the recorded signals

according to the area covered by the corresponding microphones.

They are not part of the regularization itself, but are analogous

to the integration quadratures used on a spherical surface. We

used weighting coefficients that are proportional to the area of each

microphone’s neighborhood. The neighborhood of a microphone is

defined as all points on the sphere that are closer to it than to other

microphones.

The regularization matrix is typically chosen as the identity

matrix, giving preference to solutions with smaller norms. We used,

though, a regularization matrix that depends on the decomposition

order n. It is given by the diagonal matrix [14]

Rmic = diag
(
ρ1, ..., ρ(Nmic+1)2

)
,

ρn2+n+m+1 = 1 + n(n + 1),
(10)

where n and m are respectively the order and degree of the spherical

harmonics of the columns of matrix Amic. In this way, high-degree

harmonics are damped more than low-degree ones, which was

seen to reduce truncation errors [14]. In order to get a good

compromise between the error and the energy of the source, we

set the regularization parameter εmic = ‖Amic‖ × 10−8, with the

norm of Amic equal to the largest singular value [19].

In particular, the solution to Eq. (7) when using a rigid spherical

baffle reads [20]

cmic = SA+
micpfar, (11)

where S is the (Nmic + 1)2 × (Nmic + 1)2 diagonal matrix whose

entries are filters to compensate for the presence of the baffle,

and A+
mic is given by Eq. (9). To remove the scattering effects

introduced by the baffle of radius rmic, we used the filters proposed

in [1]. These filters were derived assuming that the total radial

velocity equals zero at the surface of the solid sphere. The scattering

removing matrix is the diagonal matrix

S = diag
(
σ1, ..., σ(Nmic+1)2

)
,

σn2+n+m+1 = −kr2
mic

h′
n(krmic)

hn(krfar)
,

(12)

where n and m index to the columns of Amic like in Eq. (10), and

h′
n denotes the derivative of the spherical Hankel function of order

n.

The distance information contained in spherical expansion

coefficients cmic can now be edited based on Eq. (6). The

sound pressure of a synthesized sound source near the compact

microphone array is subsequently expressed in a way similar to

Eq. (7). This results in

pnear = amicDmiccmic, (13)

where amic is the row vector of (Nmic + 1)2 spherical harmonics

evaluated on the direction (θfar, φfar) multiplied with spherical

Hankel functions evaluated at rnear , and Dmic is the (Nmic+1)2×
(Nmic + 1)2 diagonal matrix of distance-editing filters
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Dmic = diag
(
δ1, ..., δ(Nmic+1)2

)
,

δn2+n+m+1 =
hn(krnear)

hn(krfar)
,

(14)

where n and m index to the columns of Amic like in Eq. (10).

To summarize this section, for a given wave number k, the sound

pressure of a proximal sound source pnear can be synthesized from

the pressure field due to a distant source pfar , as follows:

pnear = amicDmicSA+
micpfar, (15)

where A+
mic is computed with Eq. (9), S with Eq. (12), Dmic

with Eq. (14), and amic is the row vector used in Eq. (13). The

expression in Eq. (15) allows for the edition of distance information

in compact microphone array recordings. This distance-editing

capability can enhance the recordings by making sounds appear

closer than their original distance.

5. Editing distance in HRTFs

A similar analysis to the one described in previous Section can

be applied to the measurement of HRTFs. The Helmholtz’ principle

of reciprocity allows to formulate the measurement of HRTFs as an

acoustic propagation problem [21]. Two original sound sources are

assumed to be located at the listener’s ears. A surrounding array

of measurement points at a radius rfar is centered on the listener’s

head. Here, all the sources of scattering from the pinna, head and

torso of the listener, together with the original sound source, all of

them constitute the source field. When torso is not considered, the

head’s radius rhead is defined as the radius of the smallest sphere

containing the head, and hence containing the source field too.

Using Eq. (1), the set of HRTFs hfar characterized for L

surrounding measurements at far positions (θh, φh, rh) can be

written

hfar = Ahch, (16)

where ch is the column vector of (Nh + 1)2 spherical expansion

coefficients to be determined, and Ah is the L × (Nh + 1)2 matrix

of spherical harmonics evaluated on (θh, φh) multiplied with the

corresponding spherical Hankel functions evaluated at rh, both

limited to a maximum order

Nh = min(dekrhead

2
e, b

√
L − 1c). (17)

The HRTFs hnear for a sound source at an arbitrary position

nearby the listener’s head is synthesized from the set of HRTFs hfar

characterized by measurements at far distances, as follows [16]:

hnear = ahDhA
+
h hfar. (18)

The pseudo-inverse matrix A+
h and the diagonal matrix of

distance-editing filters Dh are also calculated with Eqs. (9) and

(14), respectively, but considering the L surrounding measurements

points, and therefore the dimension L instead of M , and the

dimension Nh instead of Nmic. The desired direction is that of

the recorded far source. The row vector ah is hence evaluated on

(θfar, φfar, rnear).

The left and right ear signals for a sound source nearby the

listener’s head can therefore be synthesized by filtering the sound

pressure in Eq. (15) with the corresponding HRTFs of Eq. (18)

bnear,left = pnear × hnear,left,

bnear,right = pnear × hnear,right.
(19)

6. Accuracy evaluation by computer simulations

We have performed an evaluation of the numerical accuracy when

the synthesized sound sources lie on the horizontal plane. For this

purpose we have used an average model of a human head. The

left-right symmetry of the model used allowed us to evaluate the

synthesis accuracy by examining the signals of only one ear.

6. 1 Conditions for the evaluation
To avoid spatial aliasing, microphones and sound sources to

characterize HRTFs should be placed on regular samplings of the

sphere. Regular spherical samplings, though, are only possible for

the platonic solids. Among existing almost-regular samplings of

the sphere, we have chosen the constructions based on subdivisions

of the icosahedron’s edges. Figure 3 shows an example of an

icosahedral grids, where dots indicate the positions of microphones

or sound sources used to characterize HRTFs, and the lines enclose

their neighborhoods. It can be seen that icosahedral grids provide

almost constant weighting coefficients, which are proportional to

the area of each neighborhood.

Fig. 3 An icosahedral grid. This kind of spherical sampling was used

to distribute microphones and far sound sources to characterize

HRTFs.

At this stage, we have performed an initial evaluation assuming

the same number of microphones and characterizing sound sources:

M = L = 1962. The available data allowed for spherical

harmonics expansions of orders up to N = 43. Microphones

were assumed to be placed on a baffle of radius rmic = 8.5 cm.

We consider this is the size of an average human head [22]. The

smallest sphere containing the head model has a radius rhead =

14.5 cm. Under these considerations, sound fields were expected to

be accurately represented by spherical harmonics up to 20 kHz, and

HRTFs up to 12.4 kHz.
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Fig. 4 Reference HRTFs (left), synthesized signals (middle) and error signals (right) for the left ear

and sound sources in the horizontal plane of elevation 0◦. Sound sources are at desired

distances of 75 cm (top) and 25 cm (bottom). Reference HRTFs were numerically computed

for a dummy head. We assumed 1962 microphones and initial HRTFs, and hence spherical

harmonics decompositions of orders up to N = 43.

We calculated the microphone signals pfar produced by a distant

sound source using a model of the acoustic scattering from a

rigid sphere [23]. We considered sets of microphone signals

corresponding to 360 far sound sources equiangularly distributed on

the horizontal plane at a radius rfar = 1.5 m. Initial sets hfar of

HRTFs for sound sources at a distance rfar = 1.5 m were computed

numerically for a dummy head using the Boundary Element Method

(BEM) [24].

Transfer functions for the whole binaural synthesis process,

denoted by b(θ, rnear, f), were characterized by using Eqs. (15),

(18) and (19), for several frequencies and desired positions in

the horizontal plane. We refer to this transfer functions as

the synthesized ear signals. On the other hand, a reference

set of near-field HRTFs, denoted by href (θ, rnear, f), was also

numerically computed using BEM. The resulting transfer functions

for the whole binaural synthesis process were finally compared with

the reference near-field HRTFs.

For a desired distance rnear , accuracy was calculated using

the error signals between the reference HRTFs href (θ, f) and the

synthesized binaural signals b(θ, f). The error signals are defined

by [25]:

ε(θ, f) =

∣∣∣∣20 log10

∣∣∣∣
href (θ, f)

b(θ, f)

∣∣∣∣
∣∣∣∣ . (20)

6. 2 Simulation results
Fig. 4 shows two sets of reference HRTFs (left), synthesized

signals (middle), and the corresponding error signals (right). The

sets corresponds to the left ear and sound sources at desired

distances of 75 cm (top) and 25 cm (bottom). Sound sources

lie in the horizontal plane of elevation 0◦. A visual comparison

between the reference HRTFs and the synthesized ear signals

shows that the synthesis for sound sources placed on the same

side of the ear (azimuth from 0◦ to 180◦) is performed with good

accuracy. Nevertheless, clearly decreasing accuracies appear for

sound sources placed on the opposite side of the ear (azimuth from

-180◦to 0◦). In this region, the head shadowing produces signals

that show rapid variations along frequency and azimuths.

Rapid variations can also be seen in positive azimuths around

10 kHz. In this region, decreasing accuracies also appear specially

when the desired distance is very closed to the listener’s head, as

can be seen in the bottom panels in Fig. 4. However, this can also

be related to the limitation of the HRTF expansion up to a maximum

frequency of 12.4 kHz. A future evaluation should consider initial

sets of HRTFs characterized for at least 5000 surrounding sound

sources. Using this spatial resolution, the spectral cues that arise

from the scattering of sound by the listener’s head would be covered

in full audible frequency range up to 20 kHz.

This initial evaluation was based on the pressure of a sound

source near the listener’s head. It was synthesized from the spherical

harmonic encodings of the same sound source at the same direction

but placed faraway from the listener’s. The spherical harmonics

encodings, though, contains the information to synthesize the sound

pressure field on any spherical surface centered on the origin of the

coordinate system. They can therefore also be decoded for a set

of positions surrounding the listener’s head by applying matrices
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with desired directions instead of the row vectors amic and ah

used in Eqs. (15) and (18), respectively. This would lead to a

reproduction technique based on an array of surrounding virtual

loudspeakers [26], which can be of interest for an evaluation in the

future.

7. Conclusions

We proposed a 3D audio processing method to make sounds

appear closer or farther during their binaural rendering. Our

proposal combines the spherical harmonics representation of both

sound field recordings and HRTFs. Our method requires a

rigid spherical microphone array and the HRTFs for only some

surrounding positions at a fixed distance.

Accuracy was evaluated on the horizontal plane. Accurate

synthesis was obtained when sound sources lie on the same side

as the ear. We noticed that the spherical harmonics expansion does

not yield good approximations in regions where signals show rapid

variations as functions of frequency and azimuth. However, further

evaluations based on higher spatial resolution data need still to be

done.
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[9] Hae-Young Kim, Yôiti Suzuki, Shouichi Takane, and Toshio Sone,
“Control of auditory distance perception based on the auditory
parallax model,” Appl. Acoust., vol. 62, no. 3, pp. 245–270, Mar.
2001.

[10] Pavel Zahorik, Douglas S. Brungart, and Adelbert W. Bronkhorst,
“Auditory distance perception in humans: A summary of past and
present research,” Acta Acust. United Ac., vol. 91, pp. 409–420,
2005.

[11] W. G. Gardner and K. D. Martin, “HRTF measurements of a
KEMAR,” J. Acoust. Soc. Am., vol. 97, pp. 3907–3908, June 1995.

[12] V.R. Algazi, R.O. Duda, D.M. Thompson, and C. Avendano, “The
CIPIC HRTF database,” in Applications of Signal Processing to
Audio and Acoustics, 2001 IEEE Workshop on the, 2001, pp. 99–102.

[13] Alan Kan, Craig Jin, and Andre van Schaik, “A psychophysical
evaluation of near-field head-related transfer functions synthesized
using a distance variation function,” J. Acoust. Soc. Am., vol. 125,
no. 4, pp. 2233–2242, Apr. 2009.

[14] Ramani Duraiswami, Dmitry N. Zotkin, and Nail A. Gumerov,
“Interpolation and range extrapolation of HRTFs,” in Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal
Processing, May 2004, vol. 4, pp. 45–48.

[15] Wen Zhang, Thushara Abhayapala, and Rodney A. Kennedy,
“Insights into head-related transfer function: spatial dimensionality
and continuous representation,” J. Acoust. Soc. Am., vol. 127, no. 4,
pp. 2347–2357, Apr. 2010.

[16] Martin Pollow, Khoa-Van Nguyen, Olivier Warusfel, Thibaut
Carpentier, Markus Müller-Trapet, Michael Vorländer, and Markus
Noisternig, “Calculation of head-related transfer functions for
arbitrary field points using spherical harmonics,” Acta Acust. United
Ac., vol. 98, no. 1, pp. 72–82, Jan. 2012.

[17] T.D. Abhayapala, T.S. Pollock, and R.A. Kennedy, “Characterization
of 3D spatial wireless channels,” in Vehicular Technology
Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, Oct. 2003, vol. 1,
pp. 123–127 Vol.1.

[18] A. Neumaier, “Solving ill-conditioned and singular linear systems: A
tutorial on regularization,” SIAM Review, vol. 40, no. 3, pp. 636–666,
1998.
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