Auditory Brain Models for the Localization and Identification of Sound

<u>César D. Salvador¹</u>, Ryo Teraoka² and Shuichi Sakamoto³

¹Perception Research

²Graduate School of Humanities and Social Sciences, Kumamoto University, Japan ³Research Institute of Electrical Communication, Tohoku University, Japan

Importance of auditory brain modeling

- Smart capture, analysis, and rendering of auditory scenes
 - Object-based representation
- Applications
 - Hearing aids
 - 3D audio for VR/AR/XR
 - Machine hearing

Brain modeling concepts

- Neural connectivity
 - Structural: Anatomical links
 - Functional: Statistical association
- Neural pathway
 - Bottom-up: Stimulus-driven (e.g., localization of sound)
 - Top-down: Goal-oriented (e.g., identification of sound)

Considerations

- ↑ High-scale functionality
- ↑ Algorithmic efficiency
- ↓ Biological detail

Localization and identification of sound

Primary features

Interpretation of features

Tools for auditory modeling

- Development system for auditory modeling (L. P. O'Mard et al., 1986-2007)
- Auditory toolbox (M. Slaney et al., 1993-1998)
- Auditory modeling toolbox (P. L. Søndergaard et al., 2013)
- Two!Ears Auditory Model (A. Raake et al., 2013-2016)
 - Modular
 - Scalable
 - Object-oriented
 - Real time

Acoustic filtering of the head and ears

Head-related transfer functions (HRTFs)

C. D. Salvador *et al.*, "Dataset of near-distance head-related transfer functions calculated using the boundary element method," *Proc. Audio Eng. Soc. Int. Conf. Spatial Reproduction — Aesthetics and Science*—, Tokyo, Japan, 2018.

M. L. Jepsen et al., "A computational model of human auditory signal processing and perception," J. Acoust. Soc. Am., vol. 124, no. 1, pp. 422–438, 2008.

Cochlea

-40

1000

2000

3000

4000 5000

Frequency / Hz

6000 7000 8000

V. Hohmann, "Frequency analysis and synthesis using a gammatone filterbank," *Acta Acust. United Ac.*, vol. 88, no. 3, pp. 433–442, May 2002.

Example: Localization and identification

Neuroscience-inspired machine hearing

Neuroscience-inspired machine hearing

Object-based representation

- DNN architectures
 - Fully-connected
 - Wide hidden layers
- DNN optimization metrics
 - Denoising: |x-y|_p, p = 1, 2
 - Classification: log(1+exp(-xy))

Thanks for your attention

César D. Salvador

https://cesardsalvador.github.io/

Perception Research

https://www.perception3d.com/