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Abstract—The head-related transfer function (HRTF) char-
acterizes the propagation of sound from its source to the
listener’s ears. It is commonly used in the research of spatial
sound and its applications. The HRTF takes different values
depending on the source’s position relative to the listener and
its frequency. Storing its values directly results in considerably
large data sets. Previous research to encode the HRTF using
harmonic functions cannot handle local features efficiently.
This paper advances a new analysis method to represent
raw HRTF data using local functions of the azimuth and
elevation angles. The proposal treats features of different scales
separately, in a manner similar to the wavelet transform. This
allows us to compress HRTF data considerably while accurately
preserving its features at all scales. The proposal yields better
accuracy than harmonic analysis methods for the finer spatial
patterns; this holds even when our method uses more aggressive
compression.
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I. INTRODUCTION

Humans can perceive spatial information from the sound

that reaches their ears [1]. A natural example of this is

our capacity to estimate the position of sound sources by

listening to them. To accomplish this, humans mainly rely

on cues related to the acoustic propagation path between

the source and their ears. For example, sounds that reach the

listener from one side are louder at the ear facing the source;

it is harder for sound to travel to the opposite ear since the

head acts as an obstacle. In addition to interaural differences

like this one, our sense of hearing also takes advantage of

the interaction of sound waves with the listener’s torso, head

and pinnae. The specifics of these interactions are related to

the listener’s anthropometry; they are also strongly related to

the relative position of the sound source and its frequency.

Analysis of the cues that these interactions imbue in the

sound before it reaches the listener’s ears is critical in the

study of spatial hearing and the development of 3D sound

applications.

The sound localization cues are modeled by the head-

related transfer function (HRTF), which characterizes the

effects that the listener’s body has on the sounds they

hear [1], [2]. The HRTF is defined as the sound pressure

produced by a single sound source at the listener’s ears

divided by the pressure it would generate at the position

of the head’s center when the listener is not there. HRTFs

vary among individuals and must be measured or otherwise

calculated for each person. High resolution HRTF data sets

must store the results of these measurements or calculations

for sound sources positioned at many different angles rel-

ative to the listener’s front and for frequencies comprising

the full hearing range of 20 Hz to 20 kHz [3]–[5]. The large

amount of data makes working with these data sets difficult.

An alternative representation of HRTF data is needed to

facilitate its analysis and use.

Previous research efforts attempt to model HRTF data sets

using harmonic functions [6]–[8]. In particular, it is conve-

nient to treat the HRTF data for each frequency seperately

as a function of the azimuth and elevation angles. In this

context, the HRTF can be represented as a weighted sum

of spherical harmonic functions; this is the equivalent of the

Fourier transform for functions on the sphere. This approach

can reduce the amount of information needed to store the

coarse features of the HRTF. However, harmonic functions

have poor spatial resolution since all of them take large

values at most directions. This makes them inadequate to

encode the finer details and localized features present in the

HRTF.

In this paper, we advance a new method to encode

HRTFs at individual frequencies using a collection of local

functions. The target HRTF data is expressed as the weighted

sum of functions that take significant values only over

a small range of directions. The proposal resembles the

wavelet transform [9] for functions of the azimuth and

elevation angles. Our results show that the original data

can be recovered with good accuracy using a small number

of these functions. The compression rate and accuracy of

the proposal exceeds that of conventional methods based

on the spherical harmonics when the target HRTF contains

localized features.
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Figure 1. An example of HRTF data. The figure shows the left and right
views of the data calculated for the left ear assuming sound sources of
7.4 kHz. A total of 21,162 sound source directions are covered by this data
set.

Figure 2. The spherical coordinate system used in this paper. The listener’s
front lies in the positive direction of the x-axis.

II. SPHERICAL HARMONIC REPRESENTATION OF THE

HRTF

The head-related transfer function takes values depending

on the direction of the sound source relative to the listener’s

front and its frequency. Its analysis is often simplified by

considering either single directions or single frequencies.

In this paper, we focus on the latter approach and treat

the HRTF as a collection of functions of the azimuth and

elevation angles. An example HRTF at 7.4 kHz is shown in

Fig. 1.

It is convenient to use a spherical coordinate system when

working with functions of the directions. This paper will

assume the system shown in Fig. 2. Functions of the azimuth

and elevation angles (θ, ϕ) are commonly decomposed into

their harmonic components using the equivalent of the

Fourier transform on the sphere. This is also known as the

spherical harmonic expansion and is given by the following

equation [10]:

H(θ, ϕ) =

∞∑
n=0

n∑
m=−n

BnmYnm(θ, ϕ). (1)

Here, the function H(θ, ϕ) is represented as the weighted

sum of spherical harmonic functions Ynm(θ, ϕ) with coef-

ficients Bnm. The coefficients fully characterize the original

function; however, there is an infinite number of them. The

spherical harmonic function of order n and degree m can

be calculated using the following formula:

Ynm(θ, ϕ) =

⎧⎪⎨
⎪⎩
An|m|Pn|m|(sinϕ) sin(|m|θ) m < 0
1√
2
An0Pn0(sinϕ) m = 0

AnmPnm(sinϕ) cos(mθ) m > 0

(2)

Figure 3. Reconstruction of HRTF data from a finite number of spherical
harmonic expansion coefficients. The original data corresponds to 21,162
directions and a frequency of 7.4 kHz. The order 10 reconstruction uses
121 coefficients, at order 20 it comprises 441 coefficients, for order 25 this
rises to 676 coefficients, and at order 30 a total of 961 coefficients are used.

Here, Pnm is a Legendre polynomial, while Anm is the

normalization factor:

Anm = (−1)m
√

2n+ 1

2π
· (n−m)!

(n+m)!
. (3)

The expansion coefficients Bnm in Eq. (1) can be calcu-

lated as follows [10]:

Bnm =

∫ π

−π

∫ π
2

−π
2

H(θ, ϕ)Ynm(θ, ϕ) cosϕdϕdθ. (4)

Equation (4) can be used to represent the HRTF data for

a particular frequency as a set of expansion coefficients.

Meanwhile, Eq. (1) can be used to recover the original

data from these coefficients. Practical applications, however,

must limit the decomposition to a maximum order N, thus

considering only the first (N+1)2 coefficients. Furthermore,

the integral in Eq. (4) must be approximated as a numerical

quadrature since HRTF data is available only for a finite

number of sound source directions.

Figure 3 shows the result of encoding the HRTF data of

Fig. 1 using Eq. (4) and decoding it using Eq. (1). The results

for a maximum order of 10 (121 coefficients) show that the

coarse features of the HRTF are preserved despite the drastic

reduction in the amount of data (less than one percent of the

original). However, localized structures, such as the deeps

in the stripe on the left side, or the patterns seen on the

right side can only be recovered when considering very high

orders. Increasing the order from 20 (441 coefficients) to 25

(676 coefficients) does little to improve the reconstruction

accuracy. The more intrincate patterns in the target data

only begin to appear when a maximum order of 30 (961

coefficients) is considered.

III. A NEW REPRESENTATION OF THE HRTF USING

LOCAL FUNCTIONS

Representing localized data using the spherical harmonic

functions requires very high orders and, consequently, a
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Figure 4. Examples of local functions of different size or scale seen
from their centers and sides. The functions are defined as the product of a
two-dimensional gaussian and an cosine.

large number of coefficients. The reason behind this is

the low spatial resolution of the harmonic functions. All

spherical harmonics take large values at most directions. The

localized features found in HRTF data sets may be encoded

more efficiently using local functions.

The problem of characterizing local features in time

signals and images is typically handled by using the wavelet

transform [9]. The strict formulation of a discrete wavelet

transform, needed to represent sampled data, is difficult

when the domain of analysis is the sphere. This research

introduces a simpler alternative by defining a set of local

functions and looking for their linear combination that best

fits the target data in the least-squares sense.

A. Local analysis functions

The local functions used in our proposal arise from the

same ideas behind the Gabor and Morlet wavelets. We apply

a gaussian window to the data in order to select a small

region in the analysis domain. Harmonic analysis is then

carried out on the windowed data. This procedure results in

the following analysis functions:

Wkσ(θ, ϕ) = e−
λ2
0
(θ,ϕ)

2σ2 cos [kλ0(θ, ϕ)] . (5)

The parameters k and σ set the frequency of the harmonic

part and the width of the gaussian window, respectively. The

function λ0(θ, ϕ) stands for the angular distance between

the front (zero azimuth and elevation) and the point on the

sphere with azimuth θ and elevation ϕ.

The functions in Eq. (5) must be scaled to match the size

of the local features in the target data without altering their

shape or energy content. They must also be displaced so that

the analysis covers the entire sphere. For given parameters

k and σ, the scaled and displaced functions are:

Wkσ
sΩ(θ, ϕ) =

√
Rse

−R2
sλ2

Ω
(θ,ϕ)

2σ2 cos [kRsλΩ(θ, ϕ)] . (6)

Figure 5. Samplings of the directions used to orientate the analysis
functions of scale levels up to five. They follow a dyadic pattern, with
each edge of the polyhedra being divided into two edges to generate the
next scale level.

The subindex s denotes an integer scale level. The resulting

functions are more localized for larger values of the scaling

factor Rs. The functions λΩ(θ, ϕ) denote the angular dis-

tance between the center position Ω and some other point

on the sphere. Analysis functions for scales one through five

are shown in Fig. 4.

The HRTF data can be represented as the weighted sum

of the functions in Eq. (6) for all scales and displacements:

H(θ, ϕ) =

∞∑
s=1

∑
Ω∈Ds

CsΩW
kσ
sΩ(θ, ϕ). (7)

The sets of directions Ds should define regular samplings

of the sphere with an average separation between samples

that decreases as the scale level s increases. Equation. (7) is

the equivalent of Eq. (1); however, there is no exact formula

to calculate the coefficients CsΩ. Nevertheless, appropriate

coefficients can be estimated using the least-squares method

to invert the linear system that results from truncating Eq. (7)

to a maximum scaling factor.

IV. RESULTS AND DISCUSSION

The local functions proposed in the previous section can

characterize HRTF data. Applying the proposal requires

tuning several parameters related to the size of the analysis

functions, their frequency content and their positioning over

the sphere. The optimal choice of parameters depends on

the spatial and frequency resolution required by the target

data.

To evaluate the performance of the proposed method, we

use it to represent the HRTF data shown in Fig. 1. The

oscillation rate k is fixed as 0.5, while the width parameter

for the spatial window, σ, is set to a value of 2. The scaling

factor is chosen to grow dyadically, according to the formula

Rs = 2s. The analysis functions are positioned according

to the sets shown in Fig. 5. These sets provide almost-

regular samplings of all directions and their growth closely

resembles that of the scaling factor.
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Figure 6. Results for HRTF reconstruction from the expansion coefficients
obtained by applying the proposed local analysis functions. Scale levels one
to five comprise 12, 54, 216, 858 and 3,420 coefficients in ascending order.

Figure 7. Values for the expansion coefficients corresponding to HRTF
data analyzed up to the fifth scale level. Each coefficient is shown as a
polygon centered in the direction of its corresponding analysis function.

Figure 6 shows the HRTF data reconstructed from the

expansion coefficients obtained using the proposed functions

at different scale levels. Meanwhile, Fig. 7 shows the value

of the expansion coefficients. Most of the coefficients at the

higher scale levels (four and five) are small and have little

impact in the reconstruction of the HRTF data. They can be

discarded to achieve a more compact representation without

a significant loss of accuracy.

Figure 8 shows the result of reconstructing the HRTF data

from a limited number of expansion coefficients taken from

the five-scale-levels decomposition. The figure shows the

results of discarding the smallest coefficients and preserving

only as many as used by the spherical harmonic approach

at maximum orders of 10 (121), 20 (441), 25 (676) and 30

(961). Comparing these results with Fig. 3 shows that the

proposed functions can preserve the finer details along the

stripe on the left side and the patterns on the right side better

than the spherical harmonics, even when fewer coefficients

are used.

Figure 8. Reconstruction of HRTF data after applying the proposed
expansion up to the fifth scale level and then discarding the smallest
coefficients. The figure shows the results of keeping the same number
of coefficients as used in the spherical harmonic expansion of orders 10
(121 coefficients), 20 (441 coefficients), 25 (676 coefficients) and 30 (961
coefficients).
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